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I. Summary: Objectives and Status of Effort

In this report we summarize our accomplishments under the research program
supported by Grant FA9550-04-1-0351. Our research covers several interrelated areas:
(a) the use of graphical, hierarchical, and multiresolution representations for the
development of statistical modeling methodologies for complex phenomena and for the
construction of scalable algorithms for the fusion of multiple heterogeneous sources of
information; (b) the development of first principles methods for constructing statistical
models for shapes and for the use of these models in developing robust and statistically
optimal methods of shape estimation and recognition; and (c) the development of new
statistical learning and optimization algorithms for feature extraction, signal and image
restoration, and sensor fusion. Our research blends methods from several fields—
statistics and probability, signal and image processing, mathematical physics, scientific
computing, statistical learning theory, and differential geometry—to produce new
approaches to emerging and challenging problems in signal and image processing, and
each aspect of our program contains both fundamental research in mathematical sciences
and important applications of direct relevance to Air Force missions. In particular, our
research is relevant to automatic target recognition based on synthetic aperture radar and
laser radar imagery; wide-area surveillance and information preparation of the battlefield;
global awareness and higher-level fusion for situational assessment; and fusion of
multiple heterogeneous sensors. In all of these areas we have contacts and interactions
with AFRL staff and with industry involved in Air Force programs.

The principal investigator for this effort is Professor Alan S. Willsky. Prof.
Willsky is assisted in the conduct of this research by DiJohn Fisher, principal research
scientist in Prof. Willsky's group, by Dr. Mujdat Cetin, research scientist in Prof.
Willsky’s group, by Dr. Sujay Sanghavi, a post-doctoral researcher in Prof. Willsky’s
group, and by several graduate research assistants as well as additional thesis students not
requiring stipend or tuition support from this grant. In the next section we briefly
describe our recent research efforts; in Section III we indicate the individuals involved in
this effort; in Section IV we list the publications supported by this effort; and in Section
V we discuss several other topics including honors received by researchers involved in
this project, transitions, and plans for future transitions.



II. Accomplishments

In this section we briefly describe our research supported under this grant. We
limit ourselves here to a succinct summary and refer to the publications listed at the end
of this report for detailed developments. However, we do note here that our work
continues to have significant impact, both in terms of DoD-related activities and
transitions in progress (Section V) and in terms of recognition from the research

community.

2.1 Graphical, Multiresolution, and Hierarchical Modeling and Fusion

The research described in this section is developed in great detail in a number of
papers and reports [2, 6-7, 9-10, 12-14, 17-19, 23-24, 29-33, 35, 38, 43, 48-49, 55-63, 70-
76, 83-89, 93-105]. The overall objective of this portion of our research is the
development of methods for constructing stochastic models for phenomena that vary over
space, time, and hierarchy and that possess structure which can be exploited to construct
efficient and scaleable algorithms for statistical inference.

a) During the past year we have continued our development of so-called walk-sum
analysis for inference in Gaussian graphical models. As described in last year’s
report, walk-sum analysis represents an expansion of the set of information made
available to a node through successive message passing throughout a graphical
model (so that messages engage in “walks” throughout the network during which
they are modified at each node, so that information is accumulated in the process).
Using this interpretation, we have a precise characterization of the gap between
what Belief Propagation computes for error variances in Gaussian models and
what the exact computation should produce. This interpretation leads to the
tightest known sufficient conditions for BP convergence as well as to a deep
understanding of when BP fails. Moreover, this walks-sum analysis has provided
the basis for the solution of a long-standing open problem, namely the
development of easily checked conditions for the convergence of our previously
developed Embedded Trees algorithm. In addition, this work also provides the
basis for an adaptive method for choosing which updates should be considered at
each stage in the iteration, where the criterion used measures the incremental
value-added of each option. This idea has far broader implications, e.g., for
sensor resource management and in other powerful algorithms that we have
developed.

b) New for this year is another emerging class of algorithms based on Lagrangian
relaxation. In this approach an overall graphical model is decomposed into a set of
models each on a tractable subgraph of the original graph. Inference is then
performed subject to the constraint that the estimates produced on all of these
subgraphs agree. Adjoining these equality constraints via Lagrange multipliers
leads to iterative algorithms in which estimates are computed on all graphs
followed by modifying the decomposition to drive the estimates toward equality.
In addition to guarantees of convergence for estimates, this approach also yields



d)

upper bounds on error variances which can be further tightened by optimization of
the weighting used in the decomposition. We view this approach as the start of a
very powerful and rich approach to inference that we expect to develop further in
the future.

We have also continued our research on what we refer to as low-rank variance
estimation methods for complex graphical models. The idea behind this approach
is to construct low-rank approximations to the identity matrix (!) with particular
properties. Such a representation leads directly to an estimate of the variance at
every node in the graph corrupted by “interference” from the cross-correlation
between pairs of nodes and the dot product of the corresponding rows in the low-
rank approximation to the identity. These leads to the idea of choosing the
approximation to have orthogonal rows when cross-correlations are large but not
worrying about their non-orthogonality if the corresponding cross-correlation is
negligible. This leads to interesting graph-coloring algorithms for designing these
overcomplete sets of rows, and, together with randomized choices of signs on
these rows, we obtain unbiased estimates of the exact variances with guaranteed
accuracy for processes with exponentially decaying correlations. For processes
with long-distance correlations a variation on this approach using wavelets — and
what we refer to as spliced wavelet bases — yields equally powerful methods for
an even richer class of processes. Extension to problems involving the fusion of
multiresolution data is a promising direction for the future.

We have made significant process on a line of research that has already yielded
important results and offers much more for the future. The focus of this work is
on the building of thinned and thus more tractable graphical models that
accurately approximate the statistics of more complex models. Specifically, if we
attempt to build graphical models with maximum entropy whose statistics exactly
match those of a specified graphical model, we will, in general obtain complex
models. However, if we relax the constraints—i.e., if we only require that the
statistics of our simpler model be close to those of the more complex one—the
resulting max-entropy model is frequently dramatically simpler. We have a first
paper on this work that demonstrates the model-thinning power of this approach
and we are now considering its extension to problems involving adding hidden
variables in ways in which we can then perform thinning on this expanded model.
This is of particular importance in the context of multiresolution modeling (see
the next topic).

We have now completed a first investigation of a new class of Gaussian models
on pyramidal graphs — ones in which each level in the pyramid is itself a graphical
model but in which there are also inter-scale interconnections. Such models are
capable of capturing long-distance correlations but without the serious artifacts
arising from models defined on multiscale trees. However, these models are
defined on graphs with many loops, something that has led in the past to very
complex algorithms Thanks to the properties of these models and their other
properties, we have overcome these difficulties and produced a very powerful
suite of algorithms. One such algorithm results from another very important
property of these models, namely that the conditional correlation within any scale,
when conditioned on its coarser- and finer-scale neighbors, is dramatically
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compressed. This leads to algorithms reminiscent of multipole algorithms for the
solution of PDEs in which coarse-scale estimates are corrected by local in-scale
computations. Indeed using walk-sum analysis as described previously, not only
have we developed efficient algorithms with this structure that are guaranteed to
converge but we have used the methods for adaptive choice of embedded
subgraphs mentioned previously to achieve very rapid convergence. Moreover,
these methods can also be adapted to the very important problem of re-estimation,
i.e., rapid recomputation of estimates to incorporate new data. Such problems
arise in complex mapping applications —e.g., the incorporation of new terrain
elevation data into existing maps. In addition, these algorithms are perfectly
suited to the Lagrangian relaxation methods described previously and to the very
accurate low-rank variance estimation methods, a property that we have exploited
not only for efficient estimation but also for rapid parameter estimation.

A very recently-initiated research direction is that of learning tractable graphical
models from data, where the criterion used is not model accuracy but model utility
— in particular the error exponent in discriminating between two high-dimensional
probability distributions. As one would expect, if vast amounts of data are
available, the models learned for the two different probability distributions revert
to the best models for each individually. However, when data are limited, the
results can be significantly different. This is of potentially great value in many
contexts in which high-dimensional data need to be processed but sufficient data
are not available to build accurate models (or building such models is
computationally intractable). Applications ranging from hyperspectral data
analysis to multimodal fusion for object classification will benefit from this line
of research.

We have also initiated new efforts on discrete optimization problems specified on
graphical models, with initial focus on the so-called maximum independent set
and matching problems. Such problems arise in a variety of applications
including many involving resource management and optimization. Such
problems are naturally cast as integer programming problems which are NP-hard.
Relaxed versions of these problems can be formulated in terms of linear
programs. Such a formulation can lead to integrality gaps and thus fail to give
optimal answers; however in some cases the LP does indeed yield optimal
solutions. Alternatively these problems can be formulated as MAP estimation
problems on graphical models for which the so-called max-product algorithm
provides a general purpose algorithm that is only guaranteed to yield optimal
answers for graphs without loops but often works well in other contexts. We have
made considerable progress in relating LP and max-product approaches,
providing both conditions under which either or both are guaranteed to yield
optimal estimates as well as new algorithms.

During this past year we have continued our work on a very new class of
graphical models motivated by problems in object recognition (see Sec. 2.2) in
which we have considerable uncertainty about the numbers of features associated
with each part of an object, the numbers of parts comprising an object, the
numbers of types of objects, and the numbers of instances of each object type in
the scene being surveilled. To attack these complexities we have built on the
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framework of so-called Nonparametric Bayesian Methods exploiting so-called
Dirichlet processes (and their extensions) which allow us, in a simple manner, to
capture ambiguities and uncertainties at the level of granularity of the numbers of
“things”—features, parts, objects, etc. We have demonstrated the power of this
method in the context of object recognition, and have now initiated an effort to
exploit this framework for problems of learning dynamic models for the motion of
non-cooperative targets.

One of the important areas of application and development of efficient graphical
inference algorithms is multisensor, multitarget data association, a notoriously
complex problem. In previous years we had demonstrated that our new approach
to so-called max-product and tree-reweighting inference algorithms could yield
remarkably efficient solutions to optimal data association problems. In addition,
with an eye toward implementation in distributed sensor networks, we developed
a local, adaptive version of TRP and belief propagation algorithms in which, at
cach iteration, each node can decide whether to transmit a message to each of its
immediate neighbors based on whether the potential new message differs in a
statistically significant manner from the previous message that was sent to that
neighbor. Last year we showed that this locally adaptive algorithm can result in
dramatic reductions in computations—and communications, if these messages
were indeed sent through a sensor network—with minimal decrease in association
performance. In recent work we have extended these ideas to full temporal multi-
object tracking and data association, using ideas from Nonparametric Belief
Propagation (discussed next) to devise novel and efficient algorithms to achieve
scalability and overcome the combinatorial explosion inherent in exact multi-
target tracking. We believe that this opens the door to extremely powerful new
methods which we are just beginning to explore, using these new graphical
representations as well as incorporating the emerging methods mentioned in item
(h) involving Dirichlet processes to deal with unknown numbers of objects or
more complex situations in which groups of objects are moving as clusters (e.g.,
convoys, formation flying) but we don’t know how many clusters there are or
how many (and which) objects are in each cluster.

As the preceding item illustrates, we have continued to exploit our approach to
inference for graphical models that involve non-Gaussian densities—problems of
particular importance for various sensing modalities that provide measurements of
either bearing or range. These methods, which involve the use of methods for
nonparametric density estimation (for which reason we refer to them as
Nonparametric Belief Propagation (NBP) algorithms), can be viewed as
extensions of concepts of particle filtering to inference on graphs—this extension
is highly nontrivial, especially for graphs with loops, as the iterative computations
and generation of messages of belief propagation require new ideas for generating
“particles” to replace those messages. In addition to developing the basic
methodology, we have demonstrated its power in several very different contexts
including the target tracking application mentioned in the preceding paragraph,
source localization in sensor networks, the computer vision application of hand-
tracking in video sequences (see Section 2.2), machine learning approaches to
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object and scene recognition (see Section 2.2), and tracking of dynamically
evolving shapes of objects (see Section 2.2).

As we described last year, motivated by issues of communications-constrained
sensor network operation we have investigated two separate problems, with
considerable success in each. In the first of these we have examined the impact of
errors in message passing algorithms (where the errors might result from
“message censoring” as discussed in the context of target tracking in paragraph
(c); or they might result from message quantization). By introducing a new
dynamic range measure of error, we have been able to develop both bounds and
stochastic approximations on the propagation of errors in belief propagation
algorithms. In addition, this analysis also had yielded the best known sufficient
conditions for the convergence of belief propagation in loopy graphs. In addition,
we have completed a study of efficient computation of particle-based messages,
combining information-theoretic concepts with our NBP algorithmic structure. In
particular, since the order in which particles are transmitted is irrelevant, we have
developed a very efficient multiresolution representation of such methods that
allows very efficient coarse-to-fine coding and transmission as well as a very
effective framework for trading off accuracy of message transmission (i.e., the
level of granularity of the transmitted representations) with overall inference
quality, providing a tie directly between communication constraints on bit rates
and overall fusion accuracy.

We have also made significant progress in an investigation that brings together
the field of decentralized team decision-making and message passing algorithms
on graphs. In particular, for the case of a directed set of sensing, decision, and
communication nodes (so that each node receivey)its own measurements together
with bits from its “parent” nodes and then makes decisions resulting in bits
transmitted to its “children”) we have shown that so-called person-by-person team
optimization can be achieved via a message passing algorithm. This emphasizes
that in communication-limited contexts with distributed agents, the agents must
organize themselves and, in particular, design communication protocols for the
generation and interpretation of messages within the agent network. We have
now written an extensive paper on this work and demonstrated its value in
designing decision networks that may differ in structure from that of the
underlying variables being estimated. Moreover we have begun to develop an
undirected version of this framework — a nontrivial extension as such a framework
in principle allows feedback so that making a decision on what to communicate
must also be based on the impact that that communication will have on what will
be communicated back to the transmitting node.

m) We have also developed a new, first principles probabilistic approach to Markov

modeling on trees, together with a start on the nontrivial generalization to graphs
with loops. Interestingly this approach identifies reduced sets of conditional
independence relationships that need to be verified either in determining if a
particular set of variables are Markov or in designing hidden variable
representations to ensure Markovianity. The former interpretation of our results 1s
of great importance in the context of the estimation of the structure among a set
of observed variables—e.g., to identify statistical links among them as well as



conditional independencies, a topic sometimes referred to as link discovery. The
latter interpretation is of importance in building graphical models with tractable
structure, possibly by incorporating hidden variables, in order to adequately
approximate the statistical relationships among a set of variables of interest.

2.2 Geometric Modeling, Shape Estimation, and Object Extraction and Recognition

The research described in this section deals with efficient algorithms for large-
scale optimal estimation and is reported in detail in [3,5,11,15-16,22,26, 36-37, 39, 41,
46-47, 58-59, 70-71, 92]. The general objective of this part of our research is the
development of statistically robust methods for segmentation, shape estimation, and
object recognition. Much of our work in this area has focused on so-called curve
evolution methods and, in particular, on developing statistically-based curve evolution
algorithms. However, we now also have some research that exploits ideas from graphical
models described in the preceding subsection:

a)

b)

The use of particle-based methods as in NBP leads naturally to the question of
using Monte Carlo methods to sample from curve/shape distributions
directly—i.e., to generate “particles” that correspond to complete curves. We
have now developed a methodology for doing this — a nontrivial development
as the use of Metropolis-Hastings algorithms required developing so-called
detailed balance acceptance rules that are needed to guarantee that samples
are generated by the desired shape distribution. We have also developed
methods for displaying the uncertainty in the resulting extracted shapes —a
feature that we believe will be of great importance in object recognition
applications. One of the appealing aspects of this sampling framework is that,
with the detailed balance issue now solved, it is relatively easy to include
features in the distribution that are easily used for acceptance-rejection of
samples but are not easily incorporated into curve evolution methods. Several
papers are in progress.

One of the major areas of our current and future research in this area is that of
incorporating prior information about shape into curve evolutions. This is
particularly important for problems in which image SNR is low or in which
the objects of interest are partially occluded. Major issues here include the
development of methods for constructing prior probability distributions on
shapes from examples and the incorporation of these priors into curve
evolution formalisms. Our initial work in this area used a set of training
examples to construct a set of “eigenshapes,” which then are used to provide a
linear parameterization of a set of shapes, where the parameters of that linear
parameterization is then estimated as part of the curve evolution process.
Results on both military and medical images in both 2-D and 3-D have
demonstrated that this methodology has a great deal of promise. In addition,
we have been working to move beyond these linearly-parameterized methods
in several different directions. The first of these methods involves postulating
that the model to be learned from training examples is a mixture of two or
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distributions each of which is well characterized by principal component
analysis. This introduces a hidden variable for each training sample—i.e., the
component of the mixture to which it corresponds—which in turn leads to a
new EM-based algorithm. Results demonstrate the power of this extension to
classify shapes and model their variability. A second approach we are taking
is that of learning nonparametric models for shapes given a set of training
samples. Nonparametric density estimation methods require the use of a
distance metric between pairs of shapes, and our work has led us to use two
natural metrics, each of which leads to a different curve evolution. Both of
these have been shown to have considerable promise for recognizing and
segmenting shapes that can have considerable variability or be subject to
partial occlusion. We are also developing new methods that can incorporate
human or expert input — e.g., in the form of partial segmentations — to help
guide both curve evolution as well as Monte Carlo sampling.

¢) We have also made major progress on the development of methods for space-
time tracking of curves or boundaries that evolve in time themselves. Our
approach to this problem involves developing and exploiting models for the
probabilistic evolution of such curves—in essence developing temporal
Markov models for these curves. Our approach combines (i) the idea of using
low-dimensional parameterizations of curves (e.g., using principal
components); (i) information-theoretic methods to learn nonparametric
statistical models for the dynamics of those parameterizations; (iii) non-
parametric belief propagation to exploit these dynamic models for the tracking
of curves; and (iv) curve evolution methods based on level sets. Very
promising results have been obtained in a soon-to-be-completed Ph.D. thesis.

d) Our work on NBP has found its way into a line of inquiry not involving curve
evolution methods, namely direct tracking of objects that have constrained
motion (such as articulation of limbs, etc.), using graphical models to capture
these constraints. The surrogate application used in this study is that of hand-
tracking, and we have had good success in developing methods that are
superior to those previously developed.

e) Finally, the work described in the preceding section on Dirichlet processes has
provided the basis for machine learning methods to learn graphical models for
scenes, objects and parts—i.e., to learn relationships among these with very
limited a priori information. This is a very powerful approach to building
complex models and one that we believe is just the tip of the iceberg—e.g.,
our current approach uses fixed feature extraction methods for video imagery
and then builds models based on these features. More sophisticated
approaches—and ones that tie in well with our work on wide-area SAR
described in the next section—would involve feedback in that the front-end
feature extraction required might depend on the likely hypotheses for the
objects in the scene being imaged.

2.3 Machine Learning and Optimization Methods for Signal and Image Processing,
Fusion, and Feature Extraction

11



The research described in this section deals with methods for complex signal,
image, and data analysis using methods of machine learning and optimization- based
formulations. Our research is described in [1-2, 4, 8, 14, 21, 27-28, 34, 30, 42, 44-45, 50-
54, 66-69, 77-83, 90-92, 105-107]. Our research has led to the following lines of inquiry
and results:

a) An area in which we have made considerable progress this year is that of
blending nonparametric estimation methods (such as particle filtering)
together with learning-based optimization algorithms (e.g., approximate
dynamic programming) to examine challenging and important problems in
sensor resource management. We have had considerable success in
developing methods in several directions including: (i) switching among
multiple sensing modes—a problem of great importance in exploiting multi-
modal radar; (ii) switching field of regard for a sensor (i.e., deciding when to
look where); (iii) dealing with limited communications in designing near-
optimal systems for tracking and track hand-off in sensor networks; and, most
recently, (iv) developing bounds on the performance loss in using tractable
suboptimal strategies as opposed to truly optimal (but not computable) ones.
A number of conference and journal papers have been written or are in
progress.

b) Our work on learning object dynamics using Hierarchical Dirichlet processes
represents a new thrust for our research on learning models for complex
dynamic phenomena. We have also continued our work on exploiting ideas
from nonparametric statistics, information theory, and machine learning for
the construction of dynamic models from complex signals in an unsupervised
learning context. The principle we have adopted in this and in our other work
in this area is that of maximizing mutual information. In particular, in this
context, the objective is to identify functionals of the past of a signal that have
maximal mutual information with the next value of the signal. In the process
of performing that optimization using nonparametric statistical methods, we
also build a model for the transition probability for the process, i.e., the
conditional pdf for the next value of the signal given these maximally
informative functionals of the past. This pdf, then, serves as a dynamic model
of the phenomenon which can be used for signal prediction, simulation,
discrimination, and estimation. As discussed in Section 2.2, this method is
now finding application in our work on tracking dynamically evolving shapes.
In addition, we are using these methods in order to detect and identify
statistical links among multiple data streams (e.g., audio and video). These
methods relate closely to the ideas mentioned in Section 2.1, item (i) for
determining the statistical links among multiple variables.

¢) A continuing and very active component of our research focuses on
variational methods to produce enhanced images and reconstructions for SAR,
ISAR, and more general array processing applications. In particular, by
putting particular penalties (e.g., Ly, with p < 1) either on the reconstructed
image or on the gradient of the reconstructed image, we have shown that we

12
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can produce remarkably sharp images of point scatterers or regions and can
also correct for phase errors due to target motion—an extremely important
problem in SAR imaging of moving targets or to other sources (including
timing errors to array element location errors). Moreover, in contrast to many
other superresolution methods (e.g., MUSIC, Capon’s method), our method
can resolve multiple scattering effects that are highly correlated—e.g., due to
the presence of multipath effects. In one part of our recent research we have
developed new variational approaches for array processing that work well for
broadband sources and, in particular, for sources that generate multiple
harmonics (e.g., as are present in any motor or machinery). In other parts we
have developed new methods for coherent imaging for wide-aperture and
wide-but-sparse aperture SAR that have attracted considerable interest from
AFRL/SN.

In this last part of our research we have taken a deeper look at marrying SAR
physics with nonparametric statistical learning methods for constructing
probabilistic models for multiresolution imagery. In particular consider the
formation of SAR imagery based on a given full aperture of data. If we use
the entire aperture, we obtain imagery at the finest resolution resolvable using
that data. However, to do this we in essence must assume that all scattering is
isotropic, i.e., that the response from significant scatterers is constant across
the entire aperture. For many important scattering mechanisms this is not the
case at all, and this anisotropy is critical to distinguishing one scatterer type
from another. Suppose then, that in addition to forming an image using the
entire aperture, we also form three images each using half of the aperture: one
image using the right half, one the left, and one using a centered half-aperture.
If indeed there are anisotropic scatterers, we might expect that there would be
differences in the responses in each of these half-apertures and hence in the
images formed using them (note that these images would have pixel sizes
twice as large as the ones in the finest scale imagery). Iterating this process,
we can imagine forming a vector of images at each of a sequence of scales
corresponding to progressively smaller subapertures. By looking across scale,
then, we would expect not only to find statistical variability due to speckle but
also any evidence of anisotropic scattering manifesting itself in statistically
significant differences in pixel intensities in images formed using different
subapertures. During the past year we have initiated a new effort in this area
that employs the “sparseness prior” variational framework described in the
preceding paragraph. Initial results provide the basis for some new “best
basis” methods for imaging that avoid exhaustive search of subapertures
through a modified coarse-to-fine search with intelligent back-tracking. We
believe that there is much more that can be done in this area. For example,
one very promising direction for future work is that of coupling these front-
end algorithms with back-end object recognition using the framework of
Dirichlet processes for object recognition described in the preceding section.
In particular, we expect that by building object models that couple object
models with anisotropy properties we will be able to develop algorithms in
which object-level hypotheses will drive front-end signal processing. This

13



offers the possibility of a significant conceptual and algorithmic leap over
current methods (e.g., the current form of the so-called “PEMS Loop™ in the
algorithms developed under the MSTAR program).
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V. INTERACTIONS/TRANSITIONS

In this section we summarize our recent interactions and plans for transitions
associated with research supported by AFOSR Grant FA9550-04-1-0351, as well as
listing some important honors received by members of our research team.

Honors

(1) Dr. Alexander Ihler received two separate Outstanding Student Paper Awards,
one for his work on localization in sensor networks [31] and one for his work on
message errors in belief propagation [33].

(2) Prof. Alan Willsky received an Honorary Doctorate from Université de Rennes
(France) in October 2005. Prof. Willsky is one of two individuals receiving this
degree as part of the celebration of the 25" anniversary of the founding of IRISA
(Institut de Recherche en Informatique et Systemes Aléatoires). A two-day
workshop in honor of the recipients will be held.

(3) Mr. Lei Chen received the Outstanding Student Paper Award at the Fusion 2005
Conference in the summer of 2005.

(4) Mr. Jason Williams was also awarded the Outstanding Student Paper Award at
Fusion 2005.

(5) Mr. Dmitry Malioutov and Mr. Jason Johnson received the Outstanding Student
Paper Award at ICASSP 2006.

Participation/Presentation at Meetings
In addition to the many invited and contributed talks presented at various
meetings during the past year, we also make note of the following:

(1) Prof. Willsky delivered a plenary lecture at the Annual Review Meeting of the
Sensing and Signals Program of AFOSR, held at NC State University in May
2005.

(2) In October 2005 Dr. Cetin delivered an invited lecture at the Workshop on
Imaging from Wave Propagation at the Institute for Mathematics and its
Applications (IMA) as part of IMA’s Thematic Year on Imaging.

(3) Prof. Willsky was the Washington University John Zaborszky Distinguished
Lecturer for 2005-6 and delivered a series of lectures in February 2006.

(4) Prof. Willsky gave an invited lecture in February 2006 as part of the
University of Michigan’s Dept. of Electrical Engineering Distinguished
Lecture Series.

(5) In May 2006 Prof. Willsky gave an invited lecture in Stanford University’s
Broad Area Colloquium on Artificial Intelligence.

(6) In October 2006 Prof. Willsky gave an invited lecture in the seminar series at
the Dept. of Electrical Engineering, University of Connecticut.

(7) In April 2007 Prof. Willsky gave an invited lecture on large-scale, scalable
data assimilation from remote sensing data at the IEEE — GEOSS Workshop,
Honolulu, HI.

Consultative and Advisory Functions
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We continue to be actively engaged in a number of activities relevant to the
research being performed under our AFOSR grant:

(1) Prof. Willsky has regularly acted as a consultant to BAE Systems Advanced
Information Technologies (BAE-AIT; formerly Alphatech, Inc.) in a number
of research projects including ones that represent direct transitions of the
technology being developed under our AFOSR Grant.

(2) Prof. Willsky is serving on the Senior Review Panel for DARPA’s POSSE
(Persistent, Operational Surface Surveillance and Engagement) Program
which is aimed at rapid deployment of advanced ISR systems to active areas
of conflict (note that all of the other members of the panel are either retired 3-
and 4-star generals or individuals who previously served as Deputy Assistant
Secretaries of Defense).

Transitions

The following represent some of the ongoing transitions of our work as well as
some plans for future transitions:

(1) Our work on inference for graphical models—and especially our work on
NBP, and error analysis for belief propagation algorithms—have been
transitioned to MIT Lincoln Laboratory. There are a number of programs at
Lincoln that are exploiting our research, but the most concentrated effort
involves transition to programs in missile defense including target tracking
and discrimination. The points of contact at Lincoln are Dr. Keh-Ping Dunn
and Dr. David Choi.

(2) Our work on sensor resource management is also being transitioned to
Lincoln Laboratory where it is also finding application in missile defense
programs. The point of contact again is Dr. Dunn.

(3) Our efficient methodology for multiresolution mapping and data fusion have
been transitioned to BAE-AIT as part of several programs on fusion of
multiresolution and multipass data to produce high-fidelity terrain maps. The
point of contact for this work at BAE-AIT is Dr. Alan Chao.

(4) Transition of our graphical estimation and optimization methods to BAE-AIT
for several programs. Most recently, Prof. Willsky has been engaged with Dr.
Mark Luettgen, who heads AIT’s Fusion Technology and Systems Division,
in transitioning these methods to programs in distributed multisensor fusion
and detection, estimation, and tracking of terrorist networks.

(5) Dr. Mujdat Cetin has worked directly with Dr. Eugene Lavely of BAE-AIT on

transitioning his sparse regularization methods to problems in radar signal
processing and image formation.
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(6) Dr. Mujdat Cetin’s methods for sparse regularization for radar signal
processing and SAR analysis have been transitioned to AFRL/SN, and Dr.
Cetin, in collaboration with Prof. Randy Moses of Ohio State University have
been working toward enhancing this transition. In addition, Dr. Cetin was
recently awarded an AFRL grant under the RASER program to transition his
methods to wide-aperture SAR image formation and analysis.

(7) Our work on new graphical model methods for target tracking and for object
recognition are being transitioned to Lincoln Laboratory through one of our
students, Emily Fox, who is working with Dr. Keh-Ping Dunn and Dr. David
Choi of Lincoln.
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